Feature Vector Extraction Algorithm Based on Big Data in Engineering Quality

نویسندگان

چکیده

With the advent of information age, network has played a role in promoting development various industries. As construction enterprise, it is necessary to integrate new technologies achieve scientific management and construction. Engineering quality control lifeblood determining merits project, which life engineering key winning users, developing enterprises occupying market. Based on current problems encountered China’s industry, comprehensive evaluation system based big data paper proposed, method risk eigenvector model are extracted, processed analyzed. In paper, feature vector designed. The genetic algorithm used solve function as nonlinear optimization problem. extraction optimized. projection processing define influencing factor value. project After testing analyzing model, proves that more objective reasonable from analysis, generation mechanism indicators, provides reference for enterprises.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Selection in Structural Health Monitoring Big Data Using a Meta-Heuristic Optimization Algorithm

This paper focuses on the processing of structural health monitoring (SHM) big data. Extracted features of a  structure are reduced using an optimization algorithm to find a minimal subset of salient features by removing noisy, irrelevant and redundant data. The PSO-Harmony algorithm is introduced for feature selection to enhance the capability of the proposed method for processing the  measure...

متن کامل

Algorithm Engineering for Big Data

Perhaps the most fundamental challenge implied by advanced applications of big data sets is how to perform the vast amount of required computations sufficiently efficiently. Efficient algorithms are at the heart of this question. But how can we obtain innovative algorithmic solutions for demanding application problems with exploding input sizes using complex modern hardware and advanced algorit...

متن کامل

EVALUATING EFFICIENCY OF BIG-BANG BIG-CRUNCH ALGORITHM IN BENCHMARK ENGINEERING OPTIMIZATION PROBLEMS

Engineering optimization needs easy-to-use and efficient optimization tools that can be employed for practical purposes. In this context, stochastic search techniques have good reputation and wide acceptability as being powerful tools for solving complex engineering optimization problems. However, increased complexity of some metaheuristic algorithms sometimes makes it difficult for engineers t...

متن کامل

Big Data Quality: From Content to Context

Over the last 20 years, and particularly with the advent of Big Data and analytics, the research area around Data and Information Quality (DIQ) is still a fast growing research area. There are many views and streams in DIQ research, generally aiming at improving the effectiveness of decision making in organizations. Although there are a lot of researches aimed at clarifying the role of BIG data...

متن کامل

Lifelong aspect extraction from big data: knowledge engineering

Background Probabilistic topic models perform statistical evaluations on words co-occurrence to extract popular words and group them in topics. A topic can be considered as a concept represented through its top words. In aspect based sentiment analysis (ABSA), topics are used to represent product aspects or sentiment category. Due to the amount of content produced online, there is rich informat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: E3S web of conferences

سال: 2021

ISSN: ['2555-0403', '2267-1242']

DOI: https://doi.org/10.1051/e3sconf/202125702029